

COST Action TD1105

1ST TRAINING SCHOOL

Universitat de Barcelona, Spain, 13 - 15 June 2013

organized by UB, MIND-IN2UB - Dept. of Electronics and CSIC-IDAEA

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 1: 2012 - 2013 (Ongoing Action)

Fatima Ezahra Annanouch

PhD student / annanouch@gmail.com

Universitat Rovira i Virgili / Spain

Expertise of the Trainee related to the Action

- Synthesis of nanostructured metal oxides films
- Study of morphology and structural characteristics
- Study of the gas sensing properties of nanostructured materials
 - Chemical and thermal stability
 - High sensitivity
 - Selectivity

Current research activities of the Trainee (1/2)

Design, fabrication and characterization of chemical microsystems

- Research in advanced signal processing techniques for multisensor systems
- Development of applications with multisensor systems and electronic nose instruments

Current research activities of the Trainee (2/2)

- The bottom-up integration of WO₃ nanoneedles in sensor microsystems by using aerosol assisted chemical vapor deposition.
- Morphological and compositional studies using scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, Raman spectroscopy and DRIFTS.
- Characterization of gas sensors and their detection of traces of VOCs.

Achieved RESULTS and future activities

undoped NN Au NP Pt NP Cu NP 20 nm

SEM image of the obtained WO₃ nanoneedles

TEM images of WO3 nanoneedles decorated with metal nanoparticles.

Achieved RESULTS and future activities

Future work

- > Fabrication of sensors based on aligned Nanoneedles.
- > Studying the effect of humidity on the sensor responses.

CONCLUSIONS

- AA-CVD is a flexible technique that allows for obtaining low dimensional nanomaterials functionalised with nanoparticles of different metals in a single step;
- Easy implementation- the deposition temperature is compatible with microelectronic gas sensor substrates;
- The use of nanostructured materials (CNT, nano-MOX, etc.) opens many opportunities for a new generation of gas sensors. The sensors can run at much lower temperatures than conventional ones.